Application of Diagrammatics in Computational Music Analysis
Anna Maria Matuszewska
Institute of Literary Research, Polish Academy of Sciences (Poland)
https://orcid.org/0000-0002-3832-855X
Abstract
Musical repositories recorded in various digital formats are being created and developed with ever increasing intensity. This situation opens up wide research possibilities, but also places demands on musicologists, who need to learn how to work with large databases using digital tools. These tools facilitate searching large musical collections and prove more and more effective in musical analysis. Though many solutions have already been proposed in this field, there is still room for greater coordination of research perspectives derived from musicology and computer science, which can make the results of computational analyses more clear, comprehensible, and flexibly processable. Musicologists’ needs should also be addressed by creating interfaces specially designed for music analysis.
The paper aims to present new methods of processing, presenting, and analysing musicological data. Selected musical information from Johann Sebastian Bach’s fugues BWV 846–869, generated by means of Humdrum Tools, music21 and Music Processing Suite (MPS) software, has been transformed into a relational database and visualised by means of so-called dashboards (sets of graphic data representations) using the Tableau Public software. Interactive solutions applied in this process have been designed so as to make computational analyses possibly intuitive and easily adaptable. The proposed analytic dashboards do not impose rigid working methods on researchers. The presented data can be reconfigured. Analysis of the selected piece of music can be restricted to any combination of parts, motifs, or set of measures, making both general and detailed exploration of the material possible. The project has been designed on the principles of diagrammatic reasoning proposed by Charles Sanders Peirce. The multiplicity of additional user-adaptable options creates conditions for the generation of abductive hypotheses.
Keywords:
computational musicology, interactive music analysis, diagrammaticsReferences
Baroni, Mario, Simon Maguire, William Drabkin. „The Concept of Musical Grammar”. Music Analysis 2, nr 2 (1983): 175–208, https://doi.org/10.2307/854248.
Google Scholar
Bauer, Matthias, Christoph Ernst. Diagrammatik. Einführung in ein kultur- und medienwissenschaftliches Forschungsfeld. Bielefeld: transcript Verlag, 2010.
Google Scholar
Blackwell, Alan Frank. „Metaphor in Diagrams”. Dysertacja doktorska, University of Cambridge, 1998.
Google Scholar
Borgman, Christine L. „The Digital Future is Now: A Call to Action for the Humanities”. Digital Humanities Quarterly 3, nr 4 (2009), http://www.digitalhumanities.org/dhq/vol/3/4/000077/000077.html, dostęp 21 XI 2021.
Google Scholar
Bruhn, Siglind. J.S. Bachs Wohltemperiertes Klavier Analyse und Gestaltung. Waldkirch: Edition Gorz, 2013.
Google Scholar
Buteau, Chantal, Christina Anagnostopoulou. „Can Computational Music Analysis Be Both Musical and Computational?”. Journal of Mathematics and Music 4, nr 3 (2010): 75–83.
Google Scholar
Cook, Nicholas. „Towards the Complete Musicologist”. W: 6th International Conference on Music Information Retrieval, London 2005, https://ismir2005.ismir.net/documents/Cook-CompleatMusicologist.pdf, dostęp 4 V 2023.
Google Scholar
Cuthbert, Michael Scott. „music21: a Toolkit for Computer-Aided Musicology”, https://web.mit.edu/music21/, dostęp 22 I 2021.
Google Scholar
Davis, William H. Peirce’s Epistemology. The Hague: Martinus Nijhoff, 1972.
Google Scholar
Downie, J. Stephen. „Music Information Retrieval”. Annual Review of Information Science and Technology 37 (2003): 295–340.
Google Scholar
Dürr, Alfred. Johann Sebastian Bach. Das Wohltemperierte Klavier. Kassel: Bärenreiter-Werkeinführungen, 2008.
Google Scholar
Feisthauer, Laurent, Louis Bigo, Mathieu Giraud, Florence Levé. „Estimating Keys and Modulations in Musical Pieces”. W: Sound and Music Computing Conference (SMC 2020), red. Simone Spagnol, Andrea Valle. Torino 2020, https://hal.science/hal-02886399/file/2020-smc-modulations.pdf, dostęp 4 V 2023.
Google Scholar
Giardino, Valeria. „Behind the Diagrams: Cognitive Issues and Open Problems”. W: Thinking with Diagrams. The Semiotic Basis of Human Cognition, red. Sybille Krämer, Christina Ljungberg, 77–102. Berlin: De Gruyter Mouton, 2016.
Google Scholar
Heckmann, Harald. „Elektronische Datenverarbeitung in Musikdokumentation und Musikwissenschaft. Eine Einleitung”. W: Elektronische Datenverarbeitung in der Musikwissenschaft, red. Harald Heckmann, VII–XVII. Regensburg: Gustav Bosse Verlag, 1967.
Google Scholar
Hoffmann, David. „Music Processing Suite”. https://www.musicprocessing.net/, dostęp 21 I 2021.
Google Scholar
Hofmann, David M. „Music Processing Suite: A Software System for Context-based Symbolic Music Representation, Visualization, Transformation, Analysis and Generation”. Dysertacja doktorska, Hochschule für Musik Karlsruhe, 2018.
Google Scholar
Holtzman, Steven R. „A Program for Key Determination”. Journal of New Music Research 6 (1977): 29–56.
Google Scholar
Huron, David. „The Humdrum Toolkit for Computational Music Analysis”. https://www.humdrum.org, dostęp 22 I 2021.
Google Scholar
Huron, David. „Humdrum Tools”. https://www.humdrum.org/tool/, dostęp 22 I 2021.
Google Scholar
Huron, David. The New Empiricism: Systematic Musicology in a Postmodern Age. Berkeley: Ernest Bloch Lecture, 2009.
Google Scholar
Inskip, Charles, Frans Wiering. „In Their Own Words: Using Text Analysis to Identify Musicologists’ Attitudes Towards Technology”. W: 16th International Society for Music Information Retrieval Conference, Malaga 2015, https://www.researchgate.net/publication/291096095, dostęp 4 V 2023.
Google Scholar
Jänicke, Stefan, Greta Franzini, Muhammad Faisal Cheema, Gerik Scheuermann. „On Close and Distant Reading in Digital Humanities: A Survey and Future Challenges”. W: Eurographics Conference on Visualization (EuroVis), 2015, https://www.researchgate.net/publication/282156818, dostęp 4 V 2023.
Google Scholar
Krämer, Sybille, Christina Ljungberg. Thinking with Diagrams. The Semiotic Basis of Human Cognition. Berlin: De Gruyter Mouton, 2016.
Google Scholar
Krumhansl, Carol. Cognitive Foundations of Musical Pitch. Oxford: Oxford University Press, 1990 (= Oxford Psychology Series 17)..
Google Scholar
Krupińska, Eliza. Muzyka jako forma symboliczna. Strukturalna semiotyka dzieła muzycznego. Kraków: Wydawnictwo UNUM, 2021.
Google Scholar
Longuet-Higgins, Christopher, Mark Steedman. „On Interpreting Bach”. Machine Intelligence 6 (1971): 221–241.
Google Scholar
Madsen, Soren Tjagvad, Gerhard Widmer. „Key-finding with Interval Profiles”. W: International Computer Music Conference, Copenhagen 2007, https://www.researchgate.net/publication/253466703, dostęp 4 V 2023.
Google Scholar
Matuszewska, Anna, Christoph Seibert. „Diagrammatic Analysis of J.S. Bach’s The Well-Tempered Clavier Fugues, BWV 846–851”. W: Music Encoding Conference Proceedings, Alicante 2021, https://rua.ua.es/dspace/bitstream/10045/123680/1/proceedings_book_mec21-bookmarks-159-166.pdf, dostęp 4 V 2023.
Google Scholar
Morehen, John, Ian Bent. „Computer Applications in Musicology”. The Musical Times 120, nr 1637 (1979): 563–566, https://www.jstor.org/stable/963094, dostęp 4 V 2023.
Google Scholar
Nápoles López, Néstor, Arthur Claire, Ichiro Fujinaga. „Key-finding Based on a Hidden Markov Model and Key Profiles”. W: International Workshop on Digital Libraries for Musicology, Delft 2019, https://napulen.github.io/media/justkeydding/napoles19key.pdf, dostęp 4 V 2023.
Google Scholar
Nepomuceno-Fernández, Ángel, Fernando Soler-Toscano, Fernando R. Velázquez-Quesada. „The Fundamental Problem of Contemporary Epistemology”. W: Teorema: Revista Internacional de Filosofía 33, nr 2 (2014): 89–103.
Google Scholar
Neuwirth, Markus, Martin Rohrmeier. „Wie wissenschaftlich muss Musiktheorie sein? Chancen und Herausforderungen musikalischer Korpusforschung”. Zeitschrift der Gesellschaft für Musiktheorie 13, nr 2 (2016): 171–193, https://doi.org/10.31751/915, dostęp 4 V 2023.
Google Scholar
Ortloff, Anna-Marie, Maximiliane Windl, Lydia Güntner, Thomas Schmidt. „Towards a Graphical User Interface for Quantitative Analysis in Digital Musicology”. W: Mensch und Computer 2019 – Workshopband. Bonn: Gesellschaft für Informatik e.V., 2019, https://doi.org/10.18420/muc2019-ws-568.
Google Scholar
Peirce, Charles S., „Critical Logic. Part B. Ampliative Reasoning”. W: The Collected Papers of Charles Sanders Peirce [1866–1913]. T. 2, Elements of Logic, red. Charles Hartshorne, Paul Weiss, 267. Cambridge: Harvard University Press, 1932.
Google Scholar
Peirce, Charles S., „Lectures on Pragmatism. Lecture VI: Three Types of Reasoning”. W: The Collected Papers of Charles Sanders Peirce [1866–1913]. T. 5, Pragmatism and Pragmaticism, red. Charles Hartshorne, Paul Weiss, 171. Cambridge: Harvard University Press 1934.
Google Scholar
Sapp, Craig Stuart. „Computational Methods for the Analysis of Musical Structure”. Dysertacja doktorska, Stanford University, 2011.
Google Scholar
Sapp, Craig Stuart. „Kern Scores”. http://kern.ccarh.org/, dostęp 21 I 2021.
Google Scholar
Sapp, Craig Stuart. „mkeyscape manpage”. http://extras.humdrum.org/ man/mkeyscape/, dostęp 21 I 2021.
Google Scholar
Sapp, Craig Stuart. „Visual Hierarchical Key Analysis”. Computers in Entertainment 3 (2005): 1–19.
Google Scholar
Shaffer, Kris. „What is Computational Musicology?”. https://kshaffer.github.io/2016/01/computational-musicology/, dostęp 10 XI 2022.
Google Scholar
Selleck, John, Robert Bakeman. „Procedures for the Analysis of Form: Two Computer Applications”. Journal of Music Theory 9, nr 2 (1965): 281–293.
Google Scholar
Shin, Sun-Joo. „The Role of Diagrams in Abductive Reasoning”. W: Thinking with Diagrams: The Semiotic Basis of Human Cognition, red. Sybille Krämer, Christina Ljungberg, 57–76. Berlin: De Gruyter Mouton, 2016.
Google Scholar
Stjernfelt, Frederik. Diagrammatology. An Investigation on the Borderlines of Phenomenology, Ontology, and Semiotics. New York: Springer, 2007.
Google Scholar
Tableau Software. „Tableau Public”. https://public.tableau.com/en-us/s/, dostęp 22 I 2021.
Google Scholar
Temperley, David. „What’s Key for Key? The Krumhansl-Schmuckler Key-finding Algorithm Reconsidered”. Music Perception: An Interdisciplinary Journal 17, nr 1 (1999): 65–100, https://doi.org/10.2307/40285812, dostęp 4 V 2023.
Google Scholar
Urbański, Mariusz. Rozumowania abdukcyjne. Modele i procedury. Poznań: Wydawnictwo Naukowe UAM, 2009.
Google Scholar
Warwick, Claire, Melissa Terras, Paul Huntington, Nikoleta Pappa. „If you build it will they come? The LAIRAH Study: Quantifying the Use of Online Resources in the Arts and Humanities through Statistical Analysis of User Log Data”. Literary and Linguistic Computing 23, nr 1 (2008): 85–102.
Google Scholar
Vercoe, Barry. „Review of The Computer and Music by Harry B. Lincoln”. Perspectives of New Music 9/10 (1971): 323–330, https://doi.org/10.2307/832150.
Google Scholar
Volk, Anja, Aline Honingh. „Mathematical and Computational Approaches to Music: Challenges in an Interdisciplinary Enterprise”. Journal of Mathematics and Music 6, nr 2 (2012): 73–81, https://www.tandfonline.com/doi/full/10.1080/17459737.2012.704154, dostęp 4 V 2023.
Google Scholar
Volk, Anja, Frans Wiering, Peter van Kranenburg. „Unfolding the Potential of Computational Musicology”. W: Proceedings of the 13th International Conference on Informatics and Semiotics in Organisations, 137–144. Leeuwarden: Fryske Akademy, 2011.
Google Scholar
Zahrotun, Lisna. „Comparison Jaccard Similarity, Cosine Similarity and Combined Both of the Data Clustering with Shared Nearest Neighbor Method”. Computer Engineering and Applications 5, nr 1 (2016): 11–18.
Google Scholar
Authors
Anna Maria MatuszewskaInstitute of Literary Research, Polish Academy of Sciences Poland
https://orcid.org/0000-0002-3832-855X
Statistics
Abstract views: 345PDF downloads: 218
License
Copyright (c) 2023 Anna Maria Matuszewska

This work is licensed under a Creative Commons Attribution 4.0 International License.
The author grants the publisher a royalty-free nonexclusive licence (CC BY 4.0) to use the article in Muzyka, retains full copyright, and agrees to identify the work as first having been published in "Muzyka" should it be published or used again (download licence agreement). By submitting an article the author agrees to make it available under CC BY 4.0 license.
Articles from 2018/1 to 2022/3 were published under a Creative Commons license CC BY-NC-ND 4.0. During this period the authors granted the publisher a royalty-free nonexclusive license (CC BY-ND 4.0) to use their article in "Muzyka", retained full copyright, and agreed to identify the work as first having been published in our journal should it be published or used again.